STUDENT CODE: USA-S2

Instructions

- Ensure that your name and student code are written in the spaces provided at the top of each page.
- You have 5 hours to work on the problems. Begin only when the **START** command is given.
- Use only the calculator provided.
- All results must be written in the appropriate boxes. Anything written elsewhere will not be marked. Use the reverse of the sheets if you need scrap/scratch paper.
- Write any relevant calculations in the appropriate boxes when necessary. If you provide no working and only the correct result for a complicated calculation, you will receive no marks.
- Numerical answers are meaningless without the appropriate units. You
 will be heavily penalized if units are not given where required. You
 should also take care to report answers to an appropriate number of
 significant figures.
- Treat all gases as ideal.
- You must stop work immediately when the STOP command is given. A delay in doing this may lead to your disqualification from the exam.
- When you have finished the examination, you must put your papers into the envelope provided. Do not seal the envelope.
- Do not leave the examination hall until instructed by the supervisors.
- This examination has 42 pages.
- The official English version of this examination is available on request only for clarification.

STUDENT CODE:USA-S2

Physical constants

Name	Symbol	Value
Avogadro constant	N _A	6.0221 × 10 ²³ mol ⁻¹
Boltzmann constant	k _B	1.3807 × 10 ⁻²³ J K ⁻¹
Gas constant	R	8.3145 J K ⁻¹ mol ⁻¹
Faraday constant	F	96485 C mol ⁻¹
Speed of light	с	2.9979 × 10 ⁸ m s ⁻¹
Planck constant	h	6.6261 × 10 ⁻³⁴ J s
Standard pressure	p°	10 ⁵ Pa
Atmospheric pressure	$p_{\sf atm}$	1.01325 × 10⁵ Pa
Zero of the Celsius scale		273.15 K
Standard acceleration of free fall	g	9.807 m s ⁻²
Bohr magneton	μ_{B}	9.274015 × 10 ⁻²⁴ J T ⁻¹

Helpful formulas

Volume of a cube

 $V = l^3$

Volume of a sphere

 $V = \frac{P}{a}ge^a$

Gravitational potential energy

E = mgh

Ideal Gas Equation

pV = nRT

Arrhenius equation

 $k = A \exp(-E_a / RT)$

Spin only formula

 $\mu_{eff} = \sqrt{n(n+2)}$ Bohr magnetons

STUDENT CODE: USA-S2

Periodic table with relative atomic masses

_ 1	_																18
1																	2
Н	•																He
1.003	2											13	14	15	16	17	4.003
3	4]										5	6	7	8	9	10
Li	Ве											В	С	N	0	F	Ne
6.94	9.01											10.81	12.01	14.01	<u> </u>	19.00	!!
11	12	1										13	14	15	16	17	18
Na	Mg											AI	Si	Р	S	CI	Ar
22.99	24.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.06	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
К	Са	Sc	Ti	V	Cr		Fe	1	Ni	Cu		Ga	i	As	Se	Br	Kr
39.102	40.08	44.96	47 90	50.94		54.94			i		65.37	1	i	74.92		79.904	1
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In i	Sn	Sb	Te	1	Xe
85.47		88.91	i	1		İ		102.91	1	_	1			121.75		400.00	
55	56	57	72	73	74	75	76	77	78	79	80	81					
Cs	Ва	La*	Hf	Та	w	Re	-),,]r	Pt		i i	- 1	82 Dh	83 D:	84	85	86
1 1									1 :	Au	Hg	TI	Pb	Bi	Ро	At	Rn
—			1/8.49	180.95	183.85	186.2	190.2	192.2	195.09	195.97	200.59	204.37	207.2	208 98			
87	88 D.o.	89															
Fr	κa	Ac+															

	58	59	60	61	1					67		69	,	71
*Lanthanides	Се	₽r	Nd	Pm	Sm	Εu	Gd	Тb	Dy	Ηо	Er	Τm	Υb	Lu
	140.12	140.91	144.24		150.4	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04	174.97
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
+Actinides	Th	Ра	U	Np	Pu	Αm	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232 01		238.03		!									

STUDENT CODE: USA-S2

Problem 1

10% of the total

Estimating the Avogadro constant

1a	1b	1c	1d	1e	1f	1g	1h	1i	1j	1k	Total
4	4	4	2	1	2	3	6	4	3	3	36

Many different methods have been used to determine the Avogadro constant. Three different methods are given below.

Method A – from X-ray diffraction data (modern)

The unit cell is the smallest repeating unit in a crystal structure. The unit cell of a gold crystal is found by X-ray diffraction to have the face-centered cubic unit structure (i.e. where the center of an atom is located at each corner of a cube and in the middle of each face). The side of the unit cell is found to be 0.408 nm.

a) Sketch the unit cell and calculate how many Au atoms the cell contains.

Unit cell:	
	į
Number of Au atoms in the unit cell:	

STUDENT CODE: USA-S2

b)	The density of	Au is 1.93 × 1	10⁴ kg m ⁻³ .	Calculate the	volume and	mass of the
	unit cell.					

Volume:	
Mass:	

c) Hence, <u>calculate</u> the mass of a gold atom and the Avogadro constant, given that the relative atomic mass of Au is 196.97.

Mass of Au atom:			
Avogadro constant:			

Method B - from radioactive decay (Rutherford, 1911)

The radioactive decay series of ²²⁶Ra is as follows:

$$\frac{t}{226 \text{Ra}} = \frac{t}{222 \text{Rn}} = \frac{3.825 \, \text{d}}{218 \text{Po}} = \frac{3.10 \, \text{m}}{214 \text{Pb}} = \frac{26.8 \, \text{m}}{214 \text{Pb}} = \frac{214 \, \text{Pi}}{214 \, \text{Pi}} = \frac{19.9 \, \text{m}}{214 \, \text{Pi}} = \frac{1$$

The times indicated are half-lives, the units are y = years, d = days, m = minutes. The first decay, marked t above, has a much longer half-life than the others.

d) In the table below, <u>identify</u> which transformations are α -decays and which are β -decays.

,		α-decay	β-decay
	²²⁶ Ra→ ²²² Rn		
	²²² Rn → ²¹⁸ Po		-
	²¹⁸ Po → ²¹⁴ Pb		
	²¹⁴ Pb→ ²¹⁴ Bi		
	²¹⁴ Bi→ ²¹⁴ Po		
	²¹⁴ Po →→ ²¹⁰ Pb		
	²¹⁰ Pb→ ²¹⁰ Bi		
	²¹⁰ Bi → ²¹⁰ Po		
	²¹⁰ Po → ²⁰⁶ Pb		

e) A sample containing 192 mg of ²²⁶Ra was purified and allowed to stand for 40 days. Identify the first isotope in the series (excluding Ra) that has not reached a steady state.

f)	The total rate of α -decay from the sample was then determined by scintillation to be 27.7 GBg (where 1 Bg = 1 count s ⁻¹). The sample was then sealed for
	163 days. Calculate the number of α particles produced.

g)	At the end of the 163 days the sample was found to contain 10.4 mm ³ of He, measured at 101325 Pa and 273 K. <u>Calculate</u> the Avogadro constant from these data.
h)	Given that the relative isotopic mass of 226 Ra measured by mass spectrometry is 226.25, use the textbook value of the Avogadro constant (6.022 × 10^{23} mol ⁻¹) to <u>calculate</u> the number of 226 Ra atoms in the original sample, n_{Ra} , the decay rate constant, λ , and the half-life, t , of 226 Ra (in years). You need only consider the decays up to but not including the isotope identified in (e).
n _{Ra} =	;
t =	

STUDENT CODE: USA-S2

Method C - dispersion of particles (Perrin, 1909)

One of the first accurate determinations of the Avogadro constant was carried out by studying the vertical distribution under gravity of colloidal particles suspended in water. In one such experiment, particles with radius 2.12×10^{-7} m and density 1.206×10^{3} kg m⁻³ were suspended in a tube of water at 15 °C. After allowing sufficient time to equilibrate, the mean numbers of particles per unit volume observed at four heights from the bottom of the tube were:

height / 10 ⁻⁶ m	5	35	65	95
mean number per unit volume	4.00	1.88	0.90	0.48

i)	Assuming the particles to be spherical, <u>calculate:</u> the mass, <i>m</i> , of a particle;
	the mass of the water it displaces, $m_{\rm H2O}$; and the effective mass, m^{\star} , of the
	particle in water accounting for buoyancy (i.e. taking account of the upthrust
	due to the displaced volume of water). Take the density of water to be
	999 kg m ⁻³ .

m =	m_{H2O} =
m* =	

STUDENT CODE: USA-S2

At equilibrium, the number of particles per unit volume at different heights may be modelled according to a Boltzmann distribution:

$$\frac{n_h}{n_{h_c}} = \exp\left[-\frac{E_h - E_{h_c}}{RT}\right]$$

where n_h is the number of particles per unit volume at height h,

 n_{h0} is the number of particles per unit volume at the reference height h_0 ,

 E_h is the gravitational potential energy per mole of particles at height h relative to the particles at the bottom of the tube,

R is the gas constant, 8.3145 J K⁻¹ mol⁻¹.

A graph of $\ln(n_{\rm h}/n_{\rm h0})$ against $(h-h_0)$, based on the data in the table above, is shown below. The reference height is taken to be 5 μ m from the bottom of the tube.

j)	Derive an expression for the gradient (slope) of the graph.
k)	Determine the Avogadro constant from these data.

STUDENT CODE: USA-S2

Problem 2

10% of the total

Interstellar production of H₂

2a	2b	2c	2d	2e	2f	2g	2h	2i	Total
2	2	4	2	6	6	3	2	6	33

If two atoms collide in interstellar space the energy of the resulting molecule is so great that it rapidly dissociates. Hydrogen atoms only react to give stable H_2 molecules on the surface of dust particles. The dust particles absorb most of the excess energy and the newly formed H_2 rapidly desorbs. This question examines two kinetic models for H_2 formation on the surface of a dust particle.

In both models, the rate constant for adsorption of H atoms onto the surface of dust particles is $k_a = 1.4 \times 10^{-5}$ cm³ s⁻¹. The typical number density of H atoms (number of H atoms per unit volume) in interstellar space is [H] = 10 cm⁻³.

[Note: in the following, you may treat numbers of surface-adsorbed atoms and number densities of gas-phase atoms in the same way as you would normally use concentrations in the rate equations. As a result, the units of the rate constants may be unfamiliar to you. Reaction rates have units of numbers of atoms or molecules per unit time.]

a)	assume that this rate is constant throughout.	You may
L		

STUDENT CODE: USA-S2

Desorption of H atoms is first order with respect to the number of adsorbed atoms. The rate constant for the desorption step is $k_d = 1.9 \times 10^{-3} \text{ s}^{-1}$.

b) Assuming that only adsorption and desorption take place, <u>calculate</u> the steady-state number, N, of H atoms on the surface of a dust particle.

The H atoms are mobile on the surface. When they meet they react to form H_2 , which then desorbs. The two kinetic models under consideration differ in the way the reaction is modeled, but share the same rate constants k_a , k_d , and k_r , for adsorption, desorption, and bimolecular reaction, as given below.

$$k_a = 1.4 \times 10^{-5} \text{ cm}^3 \text{ s}^{-1}$$

$$k_d = 1.9 \times 10^{-3} \text{ s}^{-1}$$

$$k_r = 5.1 \times 10^4 \text{ s}^{-1}$$

Mode	el A
	tion to form H_2 is assumed to be second order. On a dust particle the rate of val of H atoms by reaction is $k_r N^2$.
c)	Write an equation for the rate of change of <i>N</i> , including adsorption, desorption and reaction. Assuming steady state conditions, <u>determine</u> the value of <i>N</i> .
N=	
d)	Calculate the rate of production of H ₂ per dust particle in this model
!	

STUDENT CODE: USA-S2

Model B

Model B attempts to analyze the probability that the dust particles carry 0, 1 or 2 H atoms. The three states are linked by the following reaction scheme. The assumption is made that no more than 2 atoms may be adsorbed simultaneously.

 x_0 , x_1 and x_2 are the fractions of dust particles existing in state 0, 1 or 2, respectively. These fractions may be treated in the same way as concentrations in the following kinetic analysis. For a system in state m with fraction x_m , the rates of the three possible processes are

Adsorption $(m \rightarrow m + 1)$: rate = $k_a[H]x_m$

Desorption $(m \rightarrow m - 1)$: rate = $k_d m x_m$

Reaction $(m \rightarrow m-2)$: rate = $\frac{1}{2} k_r m(m-1)x_m$

e) Write down equations for the rates of change, dx_m/dt , of the fractions x_0 , x_1 and x_2 .

	 1.11.	

f)	Assuming steady-state conditions, use the above rate equations to find expressions for the ratios x_2/x_1 and x_1/x_0 , and evaluate these ratios.
g)	Evaluate the steady state fractions x_0 , x_1 and x_2
91	[If you were unable to determine the ratios in (f), use $x_2/x_1 = a \& x_1/x_0 = b$ and give the result algebraically].

STUDENT CODE: USA-S2

h) Evaluate the rate of production of H ₂ per dust particle in this model						

i) It is currently not possible to measure the rate of this reaction experimentally ., but the most recent computer simulations of the rate give a value of $9.4 \times 10^{-6} \text{ s}^{-1}$. Which of the following statements apply to each model under these conditions? Mark any box you consider to be appropriate.

Statement	Model A	Model B	Neither model
The rate determining step is adsorption of H atoms.			
The rate-determining step is desorption of H ₂ molecules.			
The rate determining step is the bimolecular reaction of H atoms on the surface.			
The rate determining step is adsorption of the second H atom.			
The implicit assumption that reaction can take place regardless of the number of atoms adsorbed leads to substantial error (at least a factor of two).			
Limiting the number of atoms adsorbed on the particle to 2 leads to substantial error (at least a factor of two).			

STUDENT CODE: USA-S2

Problem 3 Protein Folding

9% of the total

3a	3b	3с	3d	3e	3f	3g	3h	Total
2.5	3.5	1	6	2	4	2	2	23

The unfolding reaction for many small proteins can be represented by the equilibrium:

Folded Unfolded

You may assume that the protein folding reaction takes place in a single step. The position of this equilibrium changes with temperature; the melting temperature T_m is defined as the temperature at which half of the molecules are unfolded and half are folded.

The intensity of the fluorescence signal at a wavelength of 356 nm of a 1.0 μ M sample of the protein Chymotrypsin Inhibitor 2 (CI2) was measured as a function of temperature over the range 58 to 66 °C:

Temp /°C	58	60	62	64	66
Fluorescence intensity (arbitrary units)	27	30	34	37	40

A 1.0 μ M sample in which all of the protein molecules are folded gives a fluorescence signal of 21 units at 356 nm. A 1.0 μ M sample in which all of the protein molecules are unfolded gives a fluorescence signal of 43 units.

proporti	Assuming that the fluorescence intensity from each species is directly proportional to its concentration, <u>calculate</u> the fraction, <u>x</u> , of unfolded molecules present at each temperature.								
Temp /°C	58	60	62	64	66				
х									
) Give an expression for the equilibrium constant, K , in terms of x , and hence calculate the value of K at each temperature.								
Temp /°C	58	60	62	64	66				
К									

STUDENT CODE: USA-S2

C)	Estimate the value of I_m for this protein (to the nearest 1°C).
1	

$$T_m =$$

Assuming that the values of ΔH° and ΔS° for the protein unfolding reaction are constant with temperature then:

$$\ln K = -\frac{\Delta H^{\circ}}{RT} + C$$

where C is a constant.

d) Plot a suitable graph and hence <u>determine</u> the values of ΔH° and ΔS° for the protein unfolding reaction.

STUDENT CODE: USA-S2

	
╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒╒	
	
	11.00
	<u> </u>
\(\frac{1}{2} \cdot \begin{align*} \text{Proposition } Propo	
la contra a company de la c	
╶ ┈ ╒┊┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋┋	·}- - - - - - - - - - - - - - - - - - -
ր Էր ի էր անգրի ավարակում ին է փորձի և հատով և առաջիցի թուրվան մարդականականում որ և բարարական և և և և և և և արար	
	++
	
ا المصاحب المجروب المحاكم المح	
	t transfer in history
	1-1-1-1
والمسترا والمستران	
	
	* -

$$\Delta H^{\circ} = \Delta S^{\circ} =$$

If you have been unable to calculate values for ΔH° and ΔS° , you should use the following incorrect values for the subsequent parts of the question:

$$\Delta H^{\circ} = 130 \text{ kJ mol}^{-1}$$
 $\Delta S^{\circ} = 250 \text{ J K}^{-1} \text{ mol}^{-1}$

STUDENT CODE: USA-S2

∍)	Calculate the equilibrium constant for the unfolding reaction at 25 °C.							
K =								
	bu have been unable to calculate a value for K , you should use the following prize transfer the subsequent parts of the question: $K = 3.6 \times 10^{-6}$							

The first order rate constant for the CI2 protein folding reaction can be determined by following the fluorescence intensity when a sample of unfolded protein is allowed to refold (typically the pH of the solution is changed). The concentration of unfolded protein when a 1.0 μ M sample of unfolded CI2 was allowed to refold was measured at a temperature of 25 °C:

time / ms	0	10	20	30	40
concentration / μΜ	1	0.64	0.36	0.23	0.14

f) Plot a suitable graph and hence determine the value of the rate constant for the protein folding reaction, k_f , at 25 °C.

STUDENT CODE: USA-S2

				
	1-1-1-		Link	
		1		1 : 1 1 : 1 : 1 1 1 1 1 1
	<u> </u>			<u> </u>
<u> </u>				
┃ ┃-┃	-	- - - 	- - - - -	╏┊╸╏┊╸┢╸ ╏╌┊╌┊╶╌╏ ╏┋┋ ┺╬╸╂╌╬╸┨
▎▕ ▗ ▎	-	╶ ┠ ╶┋ ╌┋╌╏╌╬╌═╶╬╌═	·[- - - - -	<u> </u>
		- - - - - 		 - - - - - - - - - - - - - - - - - -
	1 1 1 1 1 1 1 1 1 1 1			
]
			1 + 1-1-1-1-1	
		 		▋▀┋▀▝▀┊▀╏ ╸┃ ▔┊▔▘ ▃▐ ▔▍ ▔
	-	-		
	 			
	1-1-1-1-1			- - - - - - - - - - - - - -
		L. L. L. L. L		-1
│ 	 - - - -	 	 	 - - - - - - - - - - -
	· - - 	- 	 	
		1111		1:11:
		-		
-				
11 11	1 4 4 4 4 4 4	1 1 1 1 1 1 1 1 1 1	11111	1 141 414
	.	- - 		
	·[···-	- 		- - - - - - - - - - - - - - - - - - -
		1 1 1		
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
	.	4		
		11.		
		 		
1 1 1 1 1 1 1 1		4-4-4-1		1 1 1 1
		 	I	
 	· 	 	 	 - - - - - - - - - - -
		1		
	1 1 1 1 1	4		
	1	<u> </u>	 	
		11111		
		 		
	1 -1-1-1 -1	 	- - - 	- - - -
			- - - -	
				4
				╎╌┼╌┼╌┼╌╏╌┼╌╌╶╌╴┈╏╌╏╌╎╌╎╴ ┃
	 			
			- - - -	
		- 	- - - - 	-
			1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
		 		

 $k_f =$

If you have been unable to calculate the values for $k_{\rm f}$, you should use the following incorrect value for the subsequent parts of the question: $k_{\rm f} = 60~{\rm s}^{-1}$.

g)	<u>Determine</u> the value of the rate constant for the protein <i>unfolding</i> reaction, k_u , at 25 °C.
k _u =	
h)	At 20 °C the rate constant for the protein folding reaction is 33 s ⁻¹ . Calculate the activation energy for the protein folding reaction.
Activ	vation energy =

STUDENT CODE: USA-S2

Problem 4

9% of the total

Synthesis of Amprenavir

4a A	4a B	4a C	4a W	4a X	4a Y	4a Z	4b	Total
4	3	2	3	3	2	3	3	23

One class of anti-HIV drugs, known as *protease inhibitors*, works by blocking the active site of one of the enzymes used in assembly of the viruses within the host cell. Two successful drugs, *saquinavir* and *amprenavir*, contain the structural unit shown below which mimics the transition state within the enzyme. In the structure, R¹, R² and R³ may represent any atom or group other than hydrogen.

Amprenavir may be synthesized as shown in the convergent scheme below.

$$\begin{array}{c} O \\ \hline \begin{array}{c} 1. \ \text{R}_2\text{B-H at } -25 \,^{\circ}\text{C} \\ \hline \begin{array}{c} 2. \ \text{NaOH} \, / \, \text{H}_2\text{O}_2 \end{array} \end{array} \hspace{0.2cm} \text{(S)-A} \end{array} \begin{array}{c} C \\ \hline \begin{array}{c} C \\ C_9\text{H}_{11}\text{NO}_6 \end{array} \end{array} \end{array}$$

The reagent R₂B-H used in the first step is chiral. Product **A** is formed as the (S)-enantiomer.

Three of the signals in the ¹H NMR spectrum of Amprenavir disappear on shaking with D₂O: δ 4.2 (2H), δ 4.9 (1H) and δ 5.1 (1H).

Page 24 / 42

STUDENT CODE: USA-S2

<u>Suggest</u> structures for a) the intermediates A, B, C, W, X, Y and Z, and b) for *Amprenavir*. Your answers should clearly show the stereochemistry at each center.

•	•	
А	В	
	.	
C		
		>- '
W		

X		
1		
Y		
Z		
_		
		i

NAME:

Amprenavir			

STUDENT CODE: USA-S2

Problem 5

10% of the total

Epoxy resins

5a A	5a B	5b	5c D	5c E	5c F	5d G	5е Н	5f	5g I	5h J	5h K	5h L	5i M	5j N	5k O	Total
2	2	1	2	2	2	3	3	1	2	2	2	2	2	4	3	35

The synthesis of epoxy resins is a multi-billion dollar industry worldwide. Epoxy resins are high performance adhesives synthesized from the reaction of a bisepoxide with a diamine. The bis-epoxide is made from H and epichlorohydrin, C. C and H can be synthesized according to the schemes below.

The synthesis of epichlorohydrin **C** begins with the reaction of propene with chlorine in the presence of light.

STUDENT CODE: USA-S2

a) <u>Draw</u> the structures of A and B:	-
A	B
b) <u>Give</u> the formula of a suitable reagent epichlorohydrin C:	for the conversion of B into
	Pattern, 1
The synthesis of H commences with the reac presence of an acid catalyst which gives D as minor products.	• •
c) <u>Draw</u> the structures of D, E, and F from	the following data:
D: Elemental composition: C 89.94%, H 10.06	6%; 6 signals in the ¹³ C NMR spectrum
E: Elemental composition: C 88.82%, H 11.18	3%; 4 signals in the ¹³ C NMR spectrum

F: Elemental composition: C 88.82%, H 11.18%; 5 signals in the ¹³C NMR spectrum

STUDENT CODE: USA-S2

D	E	F

Bubbling oxygen through a hot solution of **D** gives **G** which on exposure to acid gives phenol (hydroxybenzene) and acetone (propanone).

G turns starch iodide paper from white to dark blue. **G** has 6 signals in the ¹³C NMR spectrum and the following signals in the ¹H NMR spectrum: δ 7.78 (1H, s), 7.45-7.22 (5H, m), 1.56 (6H, s); addition of D₂O results in the disappearance of the signal at δ = 7.78.

d) Draw the structure of G.

	G	
		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
- 1		
3		
ı		
- 1		
ų		
- 1		
-		
- 1		
- 1		
- 1		

Exposure of phenol and acetone to hydrochloric acid gives compound H. The 13 C NMR spectrum for H is shown in Fig. 1. The 1 H NMR spectrum is shown in Fig. 2 together with a four-fold expansion of the region 6.5-7.1 ppm. The 1 H NMR spectrum after the addition of a drop of D_2O , is shown in Fig. 3. Peaks due to the solvent are marked with an asterisk (*).

STUDENT CODE: USA-S2

e) <u>Draw</u> the structure of H.

Н		

STUDENT CODE: USA-S2

f) <u>Draw</u> the resonance structure of phenol which explains the regioselective formation of H .
r.
A second compound, I, is also formed in the reaction of phenol with acetone. The 13 C NMR spectrum of I has 12 signals. The 1 H NMR spectrum has the following signals: δ 7.50-6.51 (8H, m), 5.19 (1H, s), 4.45 (1H, s), 1.67 (6H, s); addition of D ₂ O results in the disappearance of the signals at δ = 5.19 and 4.45
g) <u>Draw</u> a structure for I.

Excess phenol reacts with epichlorohydrin **C** in the presence of base to give compound **L** which has 6 signals in its ¹³C NMR spectrum. If the reaction is stopped before completion compounds **J** and **K** can also be isolated. Compound **L** is formed from compound **K** and compound **K** is formed from compound **J**.

h) <u>Draw</u> the structures of J, K and L.

l i			
-			
i			
			

STUDENT CODE: USA-S2

Treatment of H with a large excess of epichlorohydrin C and base gives a monomeric bis-epoxide M. M contains no chlorine atoms or OH groups.

i)	<u>Draw</u> the structure of M .
M	
form:	tment of \mathbf{H} with a small excess of epichlorohydrin and base gives \mathbf{N} . \mathbf{N} has the endgroup1-[repeat unit] _n -endgroup2 where n is approximately 10 – 15. es not contain chlorine atoms and contains one OH group per repeat unit.
j)	<u>Draw</u> the structure of N in the form indicated above (endgroup1-[repeat unit] _n -endgroup2).
N	
k)	<u>Draw</u> the repeat unit of the polymeric epoxy resin O formed from the reaction of the bis-epoxide M with ethane-1,2-diamine.

STUDENT CODE: USA-S2

Problem 6

12% of the total

Transition metal complexes

6a	6b	6c	6d	6e	6f	6g	6h	6i	6j	6k	61	Total
18	5	4	6	5	2	3	2	4	4	2	6	61

Alfred Werner used the technique of 'isomer counting' to deduce the structure of metal complexes with coordination number six. Three of the shapes he considered are shown below.

In each structure, the empty circle shows the location of the central metal atom and the filled circles show the location of the ligands. Structure X is hexagonal planar, structure Y is trigonal prismatic and structure Z is octahedral.

For each of the three shapes, there is just one structure when all of the ligands are the same, i.e. when the complex has the general formula MA_6 where A is the ligand. However, when achiral ligands A are substituted by one or more achiral ligands, it may be possible for each structure to form geometrical isomers. It might also be possible for one or more of the geometrical isomers to be optically active and exist as pairs of enantiomers.

a) Fill in the table below to indicate how many geometrical isomers may be formed for each structure X, Y, and Z as the monodentate ligands A are substituted by monodentate ligands B or by symmetrical bidentate ligands, denoted C—C. Bidentate ligand C—C can only link between two atoms on adjacent positions, i.e. those positions connected by a line in the structures X, Y, and Z.

In each case write the number of geometrical isomers in the space provided. If one of the isomers exists as a pair of enantiomers, include an asterisk, *, in

STUDENT CODE: USA-S2

the box. If two exist as two pairs of enantiomers, include two asterisks and so on. For example, if you think there are five geometrical isomers of a particular structure, three of which exist as pairs of enantiomers, write 5***.

	Number of predicted geometrical isomers						
	Hexagonal planar X	Trigonal Prismatic Y	Octahedral Z				
MA ₆	1	1	1				
MA₅B							
MA ₄ B ₂							
MA ₃ B ₃							
MA₄(C-C)							
MA ₂ (C-C) ₂			· · · · · · · · · · · · · · · · · · ·				
M(C−C)₃							

There are no known complexes that adopt the hexagonal planar geometry **X**, but structures are known for both the trigonal prismatic geometry **Y** and the octahedral geometry **Z**. In these complexes, the orbitals derived from the metal d orbitals have different energies depending on the geometry of the complex. The splitting patterns for the trigonal prismatic geometry and for the octahedral geometry are shown below.

The separations in energy, ΔE , $\Delta E'$ and $\Delta E''$ depend on the particular complex.

b)	For each of the splitting patterns d orbital notation	shown below, label the lines with the proper
mag	netic moment of 5.9 BM, the other het decide which is which.	Mn(CN) ₆] ²⁻ are both octahedral. One has a magnetic moment of 3.8 BM but you electronic arrangements for each of the
		
	[Mn(H ₂ O) ₆] ²⁺	[Mn(CN) ₆] ²⁻
1		

STUDENT CODE: USA-S2

The magnetic moments of complexes A and B shown below have been measured and found to be 1.9 and 2.7 BM but you must decide which is which.

$$\begin{bmatrix} C_6H_5 \\ C_6H_5 \\ A \end{bmatrix}^{2-} C_6H_5$$

$$B$$

d) Draw the orbital splitting diagrams for the two complexes, including the arrangements of the electrons.

Octahedral complexes are far more common than trigonal prismatic. Werner isolated five compounds $\mathbf{C} - \mathbf{G}$ containing $\mathrm{Co(III)}$, CI , and $\mathrm{NH_3}$ only, each of which contained one octahedral complex. (There is actually a sixth compound but Werner could not isolate it). Werner's five compounds had the molar conductivities shown below. The conductivities are extrapolated to infinite dilution and are expressed in arbitrary units. Compound \mathbf{G} does not react with aqueous $\mathrm{AgNO_3}$; compounds \mathbf{C} , \mathbf{D} , and \mathbf{E} react with different stoichiometric ratios of aqueous $\mathrm{AgNO_3}$; \mathbf{E} and \mathbf{F} react with the same stoichiometric ratio of aqueous $\mathrm{AgNO_3}$.

	С	D	E	F	G
molar conductivity	510	372	249	249	~0

STUDENT CODE: USA-S2

e)	As far as you are able, <u>suggest</u> a structure for each of the compounds C – G.
С	D
E	F
G	

Werner was also the first person to separate the enantiomers of an octahedral compound ,H, which contained no carbon atoms. The compound, H, is composed of only cobalt, ammonia, chloride and an oxygen species which could be either H₂O, or HO⁻ or O²⁻. The compound contains octahedrally coordinated cobalt ions. All of the chloride ions are easily removed from the compound by titration with aqueous silver nitrate. A 0.2872 g sample of H (containing no water of crystallization) required 22.8 mL (cm³) of 0.100 M silver nitrate to exchange all of the chloride.

f) <u>Calculate</u> the percentage, by mass, of chloride in H.	
H is stable to acids, but is hydrolyzed in alkali. A 0.7934 g sample of H (containing no water of crystallization) was heated with excess aqueous sodium hydroxide. Cobalt(III) oxide was formed and ammonia gas given off. The ammonia produced was distilled off and absorbed into 50.0 mL (cm³) of 0.500 M aqueous HCl. The residual HCl required 24.8 mL (cm³) of 0.500 M aqueous KOH to be neutralized.	
The remaining suspension of cobalt(III) oxide was allowed to cool, approximately 1g of potassium iodide was added, and then the mixture was acidified with aqueous HCI. The liberated iodine was then titrated with 0.200 M aqueous sodium thiosulfate and required 21.0 mL (cm³) for complete reaction.	
g) <u>Calculate</u> the percentage, by mass, of ammonia in H .	

h)	Give the equation for the reaction of cobalt(III) oxide with potassium iodide in aqueous acid.
i)	Calculate the percent, by mass, of cobalt in H.
)	Calculate the identity of the oxygen species contained in H. Show your work.

k)	Give the empirical formula of H.
<u></u>	The state of the s
I) 	Suggest a structure for the chiral compound H.